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You are given that the random variable X is exponential with mean 1, and that the 
random variable Y is uniformly distributed on the interval 0,1[ ].  Furthermore, it is known
that X and Y are independent. Find the density of the joint distribution of U = XY  and 

V =
X
Y
.

A. 2e
− uv

v
 for u > 0,  v > 0,  and u < v

B. 
e− uv

2v
 for u > 0,  v > 0,  and u < v

C. 2ve uv  for u > 0  and v > 0
D. 2ve uv  for u > 0,  v > 0,  and u < v
E. uv ⋅ e uv  for u > 0,  v > 0,  and u < v

Solution. 
We have fX ,Y x, y( ) = fX x( ) ⋅ fY y( ) = e− x ⋅1= e− x  for x > 0  and 0 < y < 1.  In order to find
the joint density of  U and V, we need to first express X and Y in terms of U and V, i.e., 
find the inverse function of the transformation. Note that all variables considered here: X, 
Y, U, V, are positive with probability one. We have  

UV = XY ⋅
X
Y

= X 2 ,

so that X = UV . Furthermore, 
U
V

=
XY
XY −1 = Y

2 .  
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This gives us Y = U
V
.  Therefore, the inverse transformation, written in terms of regular 

variables, is 

 x, y( ) = uv, u
v
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This results in 
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Therefore 

 fU ,V u,v( ) = fX ,Y x u,v( ), y u,v( )( ) ⋅ ∂ x, y( )
∂ u,v( ) = e

− uv

2v
 

for uv > 0  and 0 < uv−1 < 1,  i.e., u > 0,  v > 0,  and u < v.  
Answer B. 
 
An interesting additional question was brought up by a student in relation to this problem. 
If we want to find the marginal density of U = XY ,  then we can do the calculation 
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for u > 0, and for the calculation of the marginal density of V = X
Y

 we have 
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for v > 0. These two results look pretty complicated and it is tempting to ask the 
following question inspired by intuition given by convolution: If the probability density 
function of the distribution of the sum of independent random variables X and Y is 
established by the formula 



 fX+Y s( ) = fX x( ) fY s − x( )dx
−∞
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can’t we calculate the probability density function of the distribution of the product of 
independent random variables X and Y as 

 fX⋅Y s( ) = fX x( ) fY
s
x
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Well, no. Sometimes intuition can be misleading. We need to understand first where the 
formula  

 fX+Y s( ) = fX x( ) fY s − x( )dx
−∞

+∞

∫  

comes from. Let us start with the formula given by the definition of the cumulative 
distribution function 
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Therefore, 
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And there we have the well-known to you (and if it is not well-known to you, it should be 
on the day when you take the exam) convolution formula for the density of a sum of two 
independent random variables. But now let us apply the reasoning carefully to a product 
of two independent random variables, with the product of two random variables called 
U = XY ,  as we called it in the above exercise. We have 
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and 
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And this is the formula for the density of a product of two independent random variables. 
This is a fair warning: In mathematics, intuition can be misleading. You always need to 
check if intuition is leading you astray. Here is some information on probably the most 
fascinating example of intuition being knocked out and left unconscious by mathematics, 
the Banach-Tarski Paradox: https://en.wikipedia.org/wiki/Banach–Tarski_paradox.  
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